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Nucleon . . . 2 Key Hadrons
= Proton and Neutron

Fermions – two static properties:

proton electric charge = +1; and magnetic moment, µp

Magnetic Moment discovered by Otto Stern and

collaborators in 1933; Awarded Nobel Prize in 1943

Dirac (1928) – pointlike fermion: µp =
e~

2M

Stern (1933) – µp = (1 + 1.79)
e~

2M

Big Hint that Proton is not a point particle

Proton has constituents

These are Quarks and Gluons

Quark discovery via e− p-scattering at SLAC in 1968

– the elementary quanta of Quantum Chromo-dynamics
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′) γµ(−1) ue(P )

Nucleon’s relativistic electromagnetic current:

Indiana University Cyclotron Facility – 3 November 2006 – p. 5/57



First Contents Back Conclusion

Study Structure via
Nucleon Form Factors

Electron’s relativistic electromagnetic current:

jµ(P ′, P ) = ie ūe(P
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= ie ūe(P
′) γµ(−1) ue(P )

Nucleon’s relativistic electromagnetic current:

Jµ(P ′, P ) = ie ūp(P
′) Λµ(Q,P ) up(P ) , Q = P ′ − P

= ie ūp(P
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(
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1
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GE(Q2) = F1(Q
2)−

Q2

4M2
F2(Q

2) , GM (Q2) = F1(Q
2)+F2(Q

2) .

Point-particle: F2 ≡ 0 ⇒ GE ≡ GM
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A central goal of nuclear physics is to understand the structure

and properties of protons and neutrons, and ultimately atomic

nuclei, in terms of the quarks and gluons of QCD

So, what’s the problem?

Confinement

– No quark ever seen in isolation

Weightlessness

– 2004 Nobel Prize in Physics:

Mass of u− & d−quarks,

each just 5 MeV;

Proton Mass is 940 MeV

⇒ No Explanation Apparent

for 98.4 % of Mass Indiana University Cyclotron Facility – 3 November 2006 – p. 6/57
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If JLab Correct, then

Completely

Unexpected Result:

In the Proton

– On Relativistic

Domain

– Distribution of

Quark-Charge

Not Equal

Distribution of

Quark-Current!
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guess Mpion ≈ 2 × Mproton

3
≈ 700 MeV

WRONG . . . . . . . . . . . . . . . . . . . . . . Mpion = 140 MeV

Another meson:

. . . . . . . . . . . Mρ = 770 MeV . . . . . . . . . . . No Surprises Here
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Modern Miracles
in Hadron Physics

proton = three constituent quarks

Mproton ≈ 1 GeV

guess Mconstituent−quark ≈ 1 GeV

3
≈ 350 MeV

pion =

constituent quark + constituent antiquark

guess Mpion ≈ 2 × Mproton

3
≈ 700 MeV

WRONG . . . . . . . . . . . . . . . . . . . . . . Mpion = 140 MeV

What is “wrong” with the pion?
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Dichotomy of the Pion

How does one make an almost massless particle
. . . . . . . . . . . from two massive constituent-quarks?

Not Allowed to do it by fine-tuning a potential

Must exhibit m2

π ∝ mq

Current Algebra . . . 1968

The correct understanding of pion observables;
e.g. mass, decay constant and form factors,
requires an approach to contain a well-defined and
valid chiral limit, and an accurate realisation of
dynamical chiral symmetry breaking.

Requires detailed understanding of Connection
between Current-quark and Constituent-quark
masses Using DSEs,

we’ve provided this.
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QCD’s Emergent Phenomena

Complex behaviour arises from apparently simple rules

Quark and Gluon Confinement

No matter how hard one strikes the proton, one cannot

liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

NSAC – Understanding these phenomena is one of the

greatest intellectual challenges in physics
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and there is No intermediate range attraction!
Under these circumstances,

What is the range:
1

2 mq

∼ 20 fm or
1

2 MQ

∼ 1

3
fm?

Is 12C stable?

Probably not, if range range ∼
1

2 MQ
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and there is No intermediate range attraction!
Under these circumstances,

How does the binding energy of deuterium
change?

How does the neutron lifetime change?
How does mu − md relate to MU − MD?
Can one guarantee Mn > Mp?

How do such changes affect Big Bang
Nucleosynthesis?
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Why should
You care?

mπ = mρ ⇒ repulsive and attractive forces in
nucleon-nucleon interaction both have SAME range
and there is No intermediate range attraction!
Under these circumstances,

How does the binding energy of deuterium
change?

How does the neutron lifetime change?
How does mu − md relate to MU − MD?
Can one guarantee Mn > Mp?

Is a unique long-range interaction between
light-quarks responsible for all this or are there
an uncountable infinity of qualitatively equivalent
interactions?
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What’s the Problem?

Must calculate the proton’s wave function

– Can’t be done using perturbation theory

So what? Same is true of hydrogen atom

Determination of proton’s wave function requires

ab initio nonperturbative solution

of fully-fledged relativistic quantum field theory

Modern Physics & Mathematics

– Still quite some way from being able to do that
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Confinement

Infinitely Heavy Quarks . . . Picture in Quantum Mechanics

integration of the force-3 loops

bosonic string

V (r) = σ r − π

12

1

r

σ ∼ 470 MeV

Necco & Sommer

he-la/0108008
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Confinement

Illustrate this in terms of the action density . . . analogous to

plotting the Force = FQ̄Q(r) = σ +
π

12

1

r2

Bali, et al.

he-la/0512018
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What happens in the real world; namely, in the presence of

light-quarks? No one knows . . . but Q̄Q + 2 × q̄q

Bali, et al.

he-la/0512018

“The breaking of the string appears to be an instantaneous

process, with de-localized light quark pair creation.”

Therefore . . . No

information on potential

between light-quarks.

Indiana University Cyclotron Facility – 3 November 2006 – p. 17/57



First Contents Back Conclusion

A Compromise?
Dyson-Schwinger Equations

Indiana University Cyclotron Facility – 3 November 2006 – p. 18/57



First Contents Back Conclusion

A Compromise?
Dyson-Schwinger Equations

1994 . . . “As computer technology continues to improve,

lattice gauge theory [LGT] will become an increasingly

useful means of studying hadronic physics through

investigations of discretised quantum chromodynamics

[QCD]. . . . .”
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1994 . . . “However, it is equally important to develop other

complementary nonperturbative methods based on

continuum descriptions. In particular, with the advent of new

accelerators such as CEBAF and RHIC, there is a need for

the development of approximation techniques and models

which bridge the gap between short-distance, perturbative

QCD and the extensive amount of low- and

intermediate-energy phenomenology in a single covariant

framework. . . . ”
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1994 . . . “Cross-fertilisation between LGT studies and

continuum techniques provides a particularly useful means

of developing a detailed understanding of nonperturbative

QCD.”
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Axial-vector Ward-Takahashi identity
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Axial-vector Ward-Takahashi identity

Pµ Γl
5µ(k;P ) = S−1(k+)

1

2
λl

f iγ5 +
1

2
λl

f iγ5 S−1(k−)

−Mζ iΓl
5(k;P ) − iΓl

5(k;P ) Mζ

Satisfies BSE Satisfies DSE
Kernels must be intimately related

• Relation must be preserved by truncation
• Failure ⇒ Explicit Violation of QCD’s Chiral Symmetry
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Can a bound-state of massive constituents truly be
massless . . . without fine-tuning?
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MH := trflavour

[

M (µ)

{

TH ,
(

TH
)t
}]

= mq1+mq2

• Sum of constituents’ current-quark masses

• e.g., TK+

= 1
2

(

λ4 + iλ5
)
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∫ Λ

q

1
2tr
{

(

TH
)t

γ5γµ S(q+)ΓH(q;P )S(q−)
}

• Pseudovector projection of BS wave function at x = 0

• Pseudoscalar meson’s leptonic decay constant

i

i

i

i
Aµπ kµ

πf

k

Γ

S

(τ/2)γµ γ

S

5
55

=
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f0
H

, Independent of mq

Hence m2
H =

−〈q̄q〉0ζ
(f0

H)2
mq . . . GMOR relation, a corollary

Heavy-quark + light-quark

⇒ fH ∝ 1
√

mH

and ρH
ζ ∝ √

mH

Hence, mH ∝ mq

. . . QCD Proof of Potential Model result
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Valid for ALL Pseudoscalar mesons

ρH ⇒ finite, nonzero value in chiral limit, MH → 0

“radial” excitation of π-meson,

m2
πn 6=0

> m2
πn=0

= 0, in chiral limit

⇒ fH = 0

ALL pseudoscalar mesons except π(140) in chiral limit

Dynamical Chiral Symmetry Breaking

– Goldstone’s Theorem –

impacts upon every pseudoscalar meson
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masses below 2 GeV: π(140) ; π(1300); and π(1800)

The Pion

Consituent-Q Model: 1st three members of
n 1S0 trajectory; i.e., ground state plus radial excitations?

But π(1800) is narrow (Γ = 207 ± 13) & decay pattern might
indicate some “flux tube angular momentum” content:
SQ̄Q = 1 ⊕ LF = 1 ⇒ J = 0

& LF = 1 ⇒ 3S1 ⊕ 3S1 (Q̄Q) decays suppressed?
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Radial Excitations

Spectrum contains 3 pseudoscalars [IG(JP )L = 1−(0−)S]

masses below 2 GeV: π(140) ; π(1300); and π(1800)

The Pion

Consituent-Q Model: 1st three members of
n 1S0 trajectory; i.e., ground state plus radial excitations?

But π(1800) is narrow (Γ = 207 ± 13) & decay pattern might
indicate some “flux tube angular momentum” content:

Radial excitations & Hybrids & Exotics ⇒ Long-range radial wave
functions ⇒ sensitive to confinement

NSAC Long-Range Plan, 2002: . . . an understanding of
confinement “remains one of the

greatest intellectual challenges in physics”
Indiana University Cyclotron Facility – 3 November 2006 – p. 36/57



First Contents Back Conclusion

Radial Excitations
& Chiral Symmetry

Indiana University Cyclotron Facility – 3 November 2006 – p. 37/57



First Contents Back Conclusion

Radial Excitations
& Chiral SymmetryHöll, Krassnigg, Roberts

nu-th/0406030

Fundamental properties of QCD

Indiana University Cyclotron Facility – 3 November 2006 – p. 37/57



First Contents Back Conclusion

Radial Excitations
& Chiral SymmetryHöll, Krassnigg, Roberts

nu-th/0406030

Fundamental properties of QCD

If chiral symmetry is dynamically broken,

then in the chiral limit every pseudoscalar meson is blind

to the weak interaction except π(140).
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Fundamental properties of QCD

If chiral symmetry is dynamically broken,

then in the chiral limit every pseudoscalar meson is blind

to the weak interaction except π(140).
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]
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If chiral symmetry is not broken,

then NO pseudoscalar meson experiences the weak

interaction.
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combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

Indiana University Cyclotron Facility – 3 November 2006 – p. 38/57



First Contents Back Conclusion

Radial Excitations
& Lattice-QCDMcNeile and Michael

he-la/0607032

0 0.5 1 1.5 2 2.5 3 3.5 4

( r
0
 mπ )

2

0

0.2

0.4

0.6

0.8

f π’
/f

π
not improved
NP improved
Expt. bound

When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

Full ALPHA formulation is required to see suppression, because
PCAC relation is at the heart of the conditions imposed for
improvement (determining coefficients of irrelevant operators)
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

The suppression of fπ1
is a useful benchmark that can be used to

tune and validate lattice QCD techniques that try to determine the
properties of excited states mesons.
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Answer for the pion

Two → Infinitely many . . .
Handle that
properly in
quantum
field theory
. . .
momentum
-dependent
dressing
. . .
perceived
distribution of
mass depends
on the resolving scale
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description of light pseudoscalar and vector mesons . . .

basket of 31 masses/couplings/radii with r.m.s. error of 15%

. . . moreover, prediction of Fπ(Q2) measured in Hall C.

One parameter model . . . parameter specifies long-range

interaction between light-quarks . . . model-independent

results in ultraviolet

Next Steps . . . Applications to excited states and

axial-vector mesons, e.g., will improve understanding of

confinement interaction between light-quarks
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New Challenges

Another Direction . . . Also want/need information about

three-quark systems

With this problem . . . current expertise at approximately

same point as studies of mesons in 1995.

Namely . . . Model-building and Phenomenology,

constrained by the DSE results outlined already.
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Three-body Problem?

What is the picture in quantum field theory?

Three →
infinitely
many!
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=
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P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q
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Faddeev equation

=
aΨ

P

p
q

p
d Γb

Γ−a

p
d

p
q

bΨ
P

q

Linear, Homogeneous Matrix equation

Yields wave function (Poincaré Covariant Faddeev

Amplitude) that describes quark-diquark relative motion

within the nucleon

Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest

Frame Amplitude has . . . s−, p− & d−wave correlations
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Rest Frame

M. Oettel, et al.
nucl-th/9805054
Crude estimate based on

magnitudes ⇒ probability for a

u-quark to carry the proton’s

spin is Pu↑ ∼ 80 %, with

Pu↓ ∼ 5 %, Pd↑ ∼ 5 %,

Pd↓ ∼ 10 %.

Hence, by this reckoning ∼ 30%

of proton’s rest-frame spin is

located in dressed-quark

angular momentum.
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Diquark correlations

QUARK-QUARK

Same interaction that
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Scalar is isosinglet,
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DSE and lattice-QCD

m[ud]
0+

= 0.74 − 0.82

m(uu)
1+

= m(ud)
1+

= m(dd)
1+

= 0.95 − 1.02

Indiana University Cyclotron Facility – 3 November 2006 – p. 45/57



First Contents Back Conclusion

Nucleon EM Form Factors: A Précis
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Easily obtained:
(

1

NH

∑

H

[M exp
H − M calc

H ]2

[M exp
H ]2

)1/2

= 2%

• But is that good?

• Cloudy Bag: δM
π−loop
+ = −300 to −400 MeV!

• Critical to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., nu-th/02010084
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Quark Core

Responsible for only 2/3 of
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for the scalar and axial-vector

diquark correlations, fixed by

fitting nucleon and ∆ masses

Set A – fit to the actual masses was required; whereas for

Set B – fitted mass was offset to allow for “π-cloud” contributions
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B 1.18 1.33 0.79 0.89 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)

m1+ → ∞: MA
N = 1.15 GeV; MB

N = 1.46 GeV
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Constructive Interference: 1++-diquark + ∂µπ
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+π-loop correction 0.762 0.506 0.761 0.761 3.05 1.55 0.23

experiment 0.847 0.336 0.836 0.889 2.79 1.91

Indiana University Cyclotron Facility – 3 November 2006 – p. 51/57



First Contents Back Conclusion

Chiral Corrections

Thus far, omitted pion cloud contribution to current

Include loops following method of

. . . Ashley, Leinweber, Thomas, Young, he-lat/0308024

. . . finite-range regularisation of loop corrections

. . .
1

λ
=

2

3
fm

µp

G
p
E(Q2)

G
p
M(Q2)

= 1 − Q2

6

[

(rp)
2 − (rµ

p)2
]

rp ≈ rµ
p ⇒ ratio varies < 10% on 0 < Q2 < 0.6 GeV2

Indiana University Cyclotron Facility – 3 November 2006 – p. 51/57



First Contents Back Conclusion

Chiral Corrections

Thus far, omitted pion cloud contribution to current

Include loops following method of

. . . Ashley, Leinweber, Thomas, Young, he-lat/0308024

. . . finite-range regularisation of loop corrections

. . .
1

λ
=

2

3
fm

µp

G
p
E(Q2)

G
p
M(Q2)

= 1 − Q2

6

[

(rp)
2 − (rµ

p)2
]

rp ≈ rµ
p ⇒ ratio varies < 10% on 0 < Q2 < 0.6 GeV2

Complements nucleon mass considerations

. . . veracious understanding of all nucleon properties

. . . impossible without intelligent incorporation

of chiral corrections
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Valid for r2
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No sign yet of a zero in Gn
E(Q2), even though calculation

predicts G
p
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Data to Q2 = 3.4 GeV2 is being analysed (JLab E02-013)
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⇒ π is quark-antiquark Bound State

AND QCD’s Goldstone Mode
Foundation for Proof of

Exact Results in QCD

e.g., Quark Goldberger-Treiman

Properties of Pseudoscalar Mesons
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Poincaré Covariant

Faddeev Equation

Nonpointlike scalar and axial-vector diquark correlations

s−, p−, d−wave quark angular momentum

Quark core, relaxed to allow for pion cloud

Predicts zero in GP
E(Q2) at Q2 ≈ 6.5 GeV2
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Peak Position and Height 
-- as zero moves in toward q*q=0 

peak moves out and falls in magnitude
-- redistribution of charge ... moves to larger r

However, Current Density remains peaked at r = 0!
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Wave Function is complex and correlated mix of virtual

particles and antiparticles: s−, p− and d−waves
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Dressed-quark . . . fixed by DSE and Meson Studies

. . . Burden, Roberts, Thomson, Phys. Lett. B 371, 163 (1996)

Non-pointlike scalar and pseudovector colour-antitriplet

diquark correlations – described by

Bethe-Salpeter amplitudes . . . width for each – ωJP

Confining propagators . . . mass for each – mJP

Widths fixed by “asymptotic freedom” condition –

d

dK2

(

1

m2
JP

F(K2/ω2
JP )

)−1
∣

∣

∣

∣

∣

∣

K2=0

= 1 ⇒ ω2
JP =

1

2
m2

JP ,

Only two parameters; viz., diquark “masses”: mJP
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